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Abstract
Detailed calculations of the transport coefficients of a recently introduced particle-based model
for fluid dynamics with a non-ideal equation of state are presented. Excluded volume
interactions are modeled by means of biased stochastic multi-particle collisions which depend
on the local velocities and densities. Momentum and energy are exactly conserved locally. A
general scheme to derive transport coefficients for such biased, velocity-dependent collision
rules is developed. Analytic expressions for the self-diffusion coefficient and the shear viscosity
are obtained, and very good agreement is found with numerical results at small and large mean
free paths. The viscosity turns out to be proportional to the square root of temperature, as in a
real gas. In addition, the theoretical framework is applied to a two-component version of the
model, and expressions for the viscosity and the difference in diffusion of the two species
are given.

1. Introduction

The interplay between hydrodynamic interactions and thermal
fluctuations is crucial for a wide range of phenomena
in biophysics and soft-matter physics. Several particle-
based simulation methods such as dissipative particle
dynamics [1, 2], smooth particle hydrodynamics [3], and direct
simulation Monte Carlo [4, 5] have been developed for the
efficient modeling of these phenomena with the motivation
to coarse-grain out irrelevant atomistic details while correctly
incorporating the essential physics. One particular method
was introduced by Malevanets and Kapral in 1999 [6, 7] and
is often called stochastic rotation dynamics (SRD) [8–12] or
multi-particle collision dynamics (MPC) [13–16]. The method
is based on so-called fluid particles with continuous positions
and velocities which follow a simple, artificial dynamics and
undergo efficient multi-particle collisions. The original SRD
algorithm models a fluid with an ideal gas equation of state.
Recently, the collision rules of the original algorithm have
been generalized to model excluded volume effects, allowing
for a more realistic modeling of dense gases and immiscible

binary fluids [17, 18]. These new multi-particle collision rules
depend on local densities and velocities. The new models
can be thought of as a coarse-grained multi-particle collision
generalization of a hard-sphere fluid since, just as for hard
spheres, there is no internal energy. Their static properties
such as the equation of state and the entropy density have
been derived recently [17, 18], and were shown to be in
excellent agreement with numerical results for the pressure,
speed of sound, density fluctuations and the phase diagram.
However, the dynamic properties are not yet fully understood.
Some preliminary results about the transport coefficients were
published previously [17–20], but without derivation and
without results for the viscosity at small mean free path. In
this paper I present the details of how to derive expressions for
the self-diffusion coefficient and the shear viscosity at small
and large mean free path. For simpler, unbiased collision rules,
this was done before [8, 10, 11, 21, 22]; the added difficulty
here is that the collision probabilities depend on the particle
velocities which leads to strong correlations. The derived
formulas will be compared to numerical simulations in various
limits.
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The paper is structured as follows: section 2 introduces the
simulation model, and in section 3 the self-diffusion coefficient
is derived. In section 4 an equilibrium method to determine
the kinetic part of the viscosity is used: Green–Kubo relations
of the kinetic stress correlations are evaluated. Section 5
applies a non-equilibrium method to calculate the collisional
contribution to the viscosity by evaluating the momentum
transfer in shear flow. This non-equilibrium method is a more
rigorous version of the earlier approach introduced in [8] and
now, in principle, can be used to obtain the shear dependence
of the collisional viscosity. In section 6 the developed scheme
is applied to calculate transport coefficients for a binary model
and a model with a large collision rate.

2. Model

As in the original SRD algorithm, the solvent is modeled by
a large number N of point-like particles of mass mp which
move in continuous space with a continuous distribution of
velocities. The particle mass is set equal to unity throughout
this paper. The system is coarse-grained into (L/a)d cells of a
d-dimensional cubic lattice of linear dimension L and lattice
constant a. The algorithm consists of individual streaming
and collision steps. In the free-steaming step, the coordinates,
ri (t), of the solvent particles at time t are updated according to
ri (t+τ ) = ri (t)+τvi(t), where vi(t) is the velocity of particle
i at time t and τ is the value of the discretized time step. In
order to define the collision, we introduce a second grid with
sides of length 2a which (in d = 2) groups four adjacent cells
into one ‘supercell’.

As proposed in [8, 9], a random shift of the particle
coordinates before the collision step is required to ensure
Galilean invariance. All particles are therefore shifted by the
same random vector with components in the interval [−a, a]
before the collision step (because of the supercell structure, this
is a larger interval than in the conventional SRD algorithm).
Particles are then shifted back by the same amount after the
collision. To initiate a collision, pairs of cells in every supercell
are randomly selected. As shown in figure 1, three different
choices are possible: (a) horizontal (with σ 1 = x̂), (b) vertical
(σ 2 = ŷ), and (c) diagonal collisions (with σ 3 = (x̂ + ŷ)/

√
2

and σ 4 = (x̂ − ŷ)/
√

2). Note that diagonal collisions are
essential to equilibrate the kinetic energies in the x- and y-
directions.

In every cell, we define the mean particle velocity,

un = 1

Mn

Mn∑

i=1

vi , (1)

where the sum runs over all particles, Mn , in the cell with index
n. The projection of the difference of the mean velocities of
the selected cell pairs on σ j , �u = σ j · (u1 − u2), is then
used to determine the probability of collision. If �u < 0, no
collision will be performed. For positive �u, a collision will
occur with an acceptance probability which depends on �u
and the number of particles in the two cells, M1 and M2. This
rule mimics a hard-sphere collision on a coarse-grained level:

w dw

σ 1

σ 2

σ 3

σ 4

Figure 1. Schematic collision rules. Momentum is exchanged in
three ways: (a) horizontally along σ 1, (b) vertically along σ 2,
(c) diagonally along σ 3 and σ 4. w and wd denote probabilities of
choosing (a), (b) and (c), respectively. From [17].

for �u > 0 clouds of particles collide and exchange momenta.
The following acceptance probability was introduced in [17]:

pA(M1, M2,�u) = θ(�u) tanh(�) with

� = A �u M1 M2,
(2)

where θ is the unit step function and A is a parameter which
allows us to tune the equation of state. The hyperbolic
tangent function was chosen in (2) in order to obtain a
probability which varies smoothly between zero and unity.
This paper treats the two most relevant limits for the
acceptance probability: in the first one, which was proven
to be thermodynamically consistent, one keeps the collision
parameter A small such that the tanh can be replaced by its
argument. In the other limit, pA is simply the theta function
alone, which is equivalent to letting A go to infinity. In
principle, any other situation with A < ∞ can be handled by
expanding the tanh; all additional terms still contain solvable
integrals.

Once it is decided to perform a collision, an explicit
form for the momentum transfer between the two cells is
needed. The collision should conserve the total momentum and
kinetic energy of the cell pairs participating in the collision,
and in analogy to the hard-sphere liquid, the collision should
primarily transfer the component of the momentum which is
parallel to the connecting vector σ j . This component will
be called the parallel or longitudinal momentum. There are
many different choices which fulfill these conditions. Since the
original goal was to obtain a large speed of sound, a collision
rule was selected which leads to the maximum transfer of the
parallel component of the momentum and does not change the
transverse momentum. The rule is quite simple; it exchanges
the parallel component of the mean velocities of the two cells,
which is equivalent to a ‘reflection’ of the relative velocities,

v
‖
i (t + τ ) − u‖ = −(v

‖
i (t) − u‖) , (3)
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where u‖ is the parallel component of the mean velocity of the
particles of both cells. The perpendicular component remains
unchanged,

v⊥
i (t + τ ) = v⊥

i (t). (4)

More specifically, the rule for horizontal collisions in σ 1

direction is simply

ṽi,x = 2ux − vi,x (5)

with ṽi,x denotes vi,x(t + τ ). The y-components of the particle
velocities stay the same, ṽi,y = vi,y . For the upward diagonal
collision along the σ 3 direction one has

ṽi,x = ux + uy − vi,y

ṽi,y = ux + uy − vi,x .
(6)

It is easy to verify that these rules conserve momentum and
energy in the cell pairs.

Because of x–y-symmetry, the probabilities for choosing
cell pairs in the x- and y-directions (with unit vectors σ 1

and σ 2, see figure 1) are equal, and will be denoted by w.
The probability for choosing diagonal pairs (σ 3 and σ 4, see
figure 1) is given by wd = 1 − 2w. w and wd must be
chosen such that the hydrodynamic equations are isotropic and
do not depend on the orientation of the underlying grid. This
was done by considering the temporal evolution of the lowest
moments of the velocity distribution function, or alternatively
by evaluating the isotropy of the kinetic part of the viscous
stress tensor [18, 20]. Both approaches concluded that w =
1/4 and wd = 1/2, and previous simulations show that both
the speed of sound and the shear viscosity are isotropic for this
choice. Note, however, that this does not guarantee that all
properties of the model are isotropic. This becomes apparent at
high densities or high collision frequency, 1/τ � 1, where the
cubic anisotropy of the grid shows, leading to inhomogeneous
states with cubic symmetry [17].

3. Diffusion coefficient

The self-diffusion constant D is given by a sum over the
velocity-autocorrelation function (equation (102) in [9]),

D = τ

∞∑

n=0

′〈vx (0) vx(nτ )〉 , (7)

where the prime on the sum indicates that the n = 0 term
has the relative weight 1/2. The particle mass is set to unity
throughout the paper. Assuming molecular chaos, one has

〈vx (0) vx(nτ )〉 = kBT gn where g = 〈vx(0) vx(τ )〉
kBT

(8)

and the sum (7) turns into a geometric series which is easily
summed up to give

D = kBT τ

2

1 + g

1 − g
(9)

g is the velocity correlation one time step apart, which
completely defines the diffusion coefficient in the molecular

chaos approximation. There are four different contributions
to g as a result of possible horizontal, vertical, and the two
diagonal collisions:

g = w(gH + gV) + wd

2
(gU + gD) (10)

The vertical, gV, and the horizontal contribution, gH, occur
with probability w = 1/4, whereas the upward diagonal part,
gU, and the downward diagonal part, gD, enter with probability
wd = 1/2. The additional factor 1/2 in front of the second
bracket accounts for the fact that the two diagonal collisions
are always chosen together and on average only half of the
particles in a 2a × 2a super-cell undergo an upward diagonal
collision while the other half is subject to a downward diagonal
collision. In contrast, in a horizontal (or vertical) collision
operation all particles in the supercell can in principle be
involved in the collision since the supercell is divided in two
double cells with horizontal (or vertical) collisions in each one.
The contribution due to vertical collisions is easy to calculate,
since in this case the value of vi,x is unchanged in a collision,
equation (4), and vi,x (τ ) = vi,x (0). Following equation (8) we
find

gV = 〈vi,x (0) vi,x(τ )〉
kBT

= 1. (11)

3.1. Horizontal collisions

Consider now the horizontal contribution, gH. We assume that
there are n particles in the left subcell, and m particles in the
right subcell of the cell pair where the collision happens. It
is also assumed that the tagged particle i is contained in the
left subcell. For the moment the particle numbers n and m are
kept fixed. According to equation (2), for small A, a collision
occurs with the acceptance probability

pA = Anmθ(�u)�u; (12)

and the value of vi,x changes in the following way: vi,x (τ ) =
2ux−vi,x(0). Here, ux is the x-component of the mean velocity
of both subcells:

ux = 1

n + m

n+m∑

j=1

v j,x . (13)

For horizontal directions, �u contains only the x-components
of the particle velocities:

�u = 1

n

n∑

j=1

v j,x − 1

m

n+m∑

j=n+1

v j,x . (14)

If a collision is not accepted, which happens with
probability 1 − pA, the value of vi,x remains unchanged:
vi,x(τ ) = vi,x (0). From these considerations it follows that

gH = 1

kBT
〈pA vi,x (2ux − vi,x ) + (1 − pA)v2

i,x 〉 . (15)

The average is performed over the velocity distribution (at
time t = 0) of all involved particles and over the particle
numbers in the two subcells forming a collision cell. Note that

3
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there is a non-trivial coupling between the velocity-dependent
acceptance probability pA and the updated velocity v j,x(τ ).
Ignoring this coupling, which amounts to the approximation
〈pA v j,x(0)v j,x(τ )〉 ≈ 〈pA〉〈v j,x(0)v j,x(τ )〉, leads to an
erroneous result which is a factor of about two smaller than
the correct one, even for large particle numbers n, m.

Using 〈v2
i,x 〉 = kBT , equation (15) simplifies to

gH = 1+ 2

kBT
〈pA vi,x(ux −vi,x)〉 = 1+ 2

kBT
〈Knm〉n,m . (16)

The average 〈· · ·〉n,m denotes an average over the particle
number distribution in the two subcells (which are Poisson
distributed and uncorrelated in an ideal gas). Knm contains
the average of the velocity distribution, which is Maxwellian
if molecular chaos is assumed; and it has to be split into two
parts,

Knm = 1
2

(
K l

nm + K r
nm

)
(17)

because there are two possibilities occurring with probability
1/2, respectively: (i) the tagged particle i can be in the left
subcell as one of the n particles there, or (ii) it can be in the
right subcell with a total of m particles. Hence, one has

K l
nm = Anm J l

nm with

J l
nm =

∫ +∞

−∞
dvn+m

i,x θ (�u) �u v1,x(ux − v1,x)

n+m∏

i=1

f0(vi,x).

(18)
f0(vi,x ) is the Maxwell–Boltzmann distribution,

f0(vi,x) = � exp

(
− v2

i,x

2kBT

)
, with � = 1√

2πkBT
.

(19)
Assuming the tagged particle to be in the left subcell in

the definition of J l
nm means also that n > 0 in the expression

for J l
nm . For the same reason, m must be larger than zero in

expressions for J r
nm .

Because of the θ -function, the direct evaluation of the
(n + m)-dimensional integral becomes very tedious for large
n, m. Therefore, we express the θ -function by means of the
δ-function,

θ(�u) =
∫ ∞

0
δ(�u − c) dc (20)

which allows us to use the integral representation of the δ-
function,

δ(�u − c) =
∫ +∞

−∞
exp(ik(�u − c))

dk

2π
. (21)

Even though this transformation leads to two more integrations
it enables a straightforward calculation of J l

nm for arbitrary
n and m. It involves only simple integrals of type∫∞

0 xn exp(−x2) with n = 0, 1, 2, 3. The integral to be solved
is

J l
nm = �n+m

∫ ∞

0
dc

∫ ∞

−∞
dk

2π

∫ +∞

−∞
dvn+m

i,x

× exp

[
ik

(
1

n

n∑

j=1

v j,x − 1

m

n+m∑

j=n+1

v j,x − c

)

− 1

2kBT
(v2

1,x + ... + v2
n+m,x )

]

× v1,x

(
1

n

n∑

j=1

v j,x − 1

m

n+m∑

j=n+1

v j,x

)

×
(

1

n + m

n+m∑

j=1

v j,x − v1,x

)
. (22)

First, the argument of the exponential has to be transformed
into a sum of squares in order to decouple the velocities and
to enable integrating over them. This is achieved by the
transformations for the velocities in the left subcell:

wi = vi,x − kBT ik

n
for i = 1...n (23)

and for the ones in the right subcell,

wi = vi,x + kBT ik

m
for i = n + 1...n + m. (24)

Expressing equation (22) in the new variables wi gives

J l
nm = �n+m

∫ ∞

0
dc

∫ ∞

−∞
dk

2π

∫ +∞

−∞
dwn+m

i

× exp

(
−ikc − kBTγ k2

2

)

× exp

(
1

2kBT

[
w2

1 + w2
2 + ... + w2

n+m

])

×
(

w1 + w2 + ... + wn

n
− wn+1 + wn+2 + ... + wn+m

m

+ kBT ikγ

)(
w1 + kBT ik

n

)(
w1 + w2 + ... + wn+m

n + m

− w1 − kBT ik

n

)
(25)

with γ = (1/n) + (1/m). The integration over the wi is
straightforward and yields

J l
nm = �n+m

∫ ∞

0
dc

∫ ∞

−∞
dk

2π
exp

(
−ikc − kBT γ k2

2

)

×
[
(kBT )3ik3γ

n2
+ S(kBT )2ik

]

S = − 2

n2
+ γ

(
1

n + m
− 1

)
.

(26)

The remaining integral over h and k is done easily using similar
transformations. The final result is

J l
nm = − (kBT )3/2

√
2πγ

[
1

n2
+
(

1

n
+ 1

m

)(
1 − 1

n + m

)]
(27)

which is always negative.
The quantity J r

nm is given by an expression almost
identical to equation (27); one merely has to replace v1,x by
vn+1,x at the two positions where v1,x appears isolated. This
changes the index of the tagged particle from 1 to n + 1,
meaning that this particle is not in the left subcell but in the

4
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right one. One finds J r
nm = J l

mn , leading to an expression for
Jnm which is symmetric in n and m:

Knm = Anm

2
(J l

nm + J r
nm) = − A(kBT )3/2

√
2πγ

×
[

n2 + m2

2nm
+ n + m − 1

]
. (28)

Using equations (16)–(18), gH is calculated. In an ideal gas,
Knm has to be averaged over the Poisson-distributed particle
numbers in the subcells, n and m. In the current model with
a non-ideal equation of state, particle number fluctuations are
suppressed compared to an ideal gas. Therefore, we will
neglect these fluctuations completely for the moment, and
replace n and m by the mean number of particles in a subcell
M = 〈n〉 = 〈m〉. This leads to the final result

gH = 1 − 2A

√
kBT

π
M3/2. (29)

3.2. Diagonal collisions

Here, the upward diagonal collision (along σ 3 in figure 1)
is considered first. In this case, the velocity difference, �u,
depends on both the x- and the y-component of the particle
velocities,

�u = σ 3 ·(u1 − u2) = 1√
2

(
u1,x − u2,x + u1,y − u2,y

)
(30)

with the normal vector of the diagonal collision direction,
σ 3 = (1, 1)/

√
2, leading to a more involved calculation of

gU. Furthermore, both components of the velocities change in
a collision, but only the change of the x-component is needed:

vi,x (τ ) = ux + uy − vi,y . (31)

This change occurs with probability pA, see equation (12), but
with �u given in equation (30). It follows that

gU = 1

kBT
〈pA vi,x(ux + uy − vi,y) + (1 − pA)v2

i,x 〉. (32)

The average must be done over the velocity distribution (at time
t = 0) of all involved particles and over the particle number in
the two subcells forming a collision or double cell. Because
〈v2

i,x 〉 = kBT we can write

gU = 1 + 1

kBT
〈Rnm − Lnm〉n,m (33)

with the abbreviations

Rnm = 〈pA vi,x (ux + uy − vi,y)〉T (34)

Lnm = 〈pA v2
i,x 〉T . (35)

The subscript T means that only the thermal average is taken;
the particle numbers n and m of the subcells are kept fixed in
this average.

We consider again the two equivalent situations where the
tagged particle is in the left subcell with a total of n cells
denoted by the superscript l, or in the right cell, described

by the superscript r. Both possibilities occur with equal
probability 1/2 and we have

Rnm = 1
2

(
Rl

nm + Rr
nm

)

Lnm = 1
2

(
L l

nm + L r
nm

)
.

(36)

Other abbreviations are introduced as Rnm = Anm Fnm , and
Lnm = Anm Inm . This time the y-component of the velocities
shows up in the calculations, leading to a 2n+2m-dimensional
integral for F l

nm . We again adopt the trick to express the
θ -function in the acceptance probability pA by means of an
integral over the δ-function and use the integral representation
of δ(x), which yields the following integral:

F l
nm = �n+m

∫ ∞

0
dc

∫ ∞

−∞
dk

2π

∫ +∞

−∞
dvn+m

i,x

×
∫ +∞

−∞
dvn+m

i,y exp

{
ik

(
1√
2

[
1

n

n∑

j=1

(v j,x + v j,y)

− 1

m

n+m∑

j=n+1

(v j,x + v j,y)

]
− h

)}
× exp

{
− 1

2kBT

×
(

v2
1,x + ... + v2

n+m,x + v2
1,y + ... + v2

n+m,y

)}

× v1,x√
2

(
1

n

n∑

j=1

(v j,x + v j,y) − 1

m

n+m∑

j=n+1

(v j,x + v j,y)

)

×
(

1

n + m

n+m∑

j=1

(v j,x + v j,y) − v1,y

)
. (37)

This integral is solved straightforwardly in a very similar
fashion to the one in equation (22). The final result is

F l
nm = (kBT )3/2

√
2πγ

[
1

nm
− 1

2n2

]
. (38)

A similar calculation leads to

I l
nm = (kBT )3/2

√
2πγ

[
γ + 1

2n2

]
. (39)

Again, we observe the symmetry that the quantities with
upper index r follow from the ones with index l by simply
interchanging n and m in the obtained expressions: F r

nm =
F l

mn , I r
nm = I l

mn . Inserting these results into equation (33) and
neglecting particle number fluctuations gives

gU = 1 − A

√
kBT

π
M3/2. (40)

The evaluation of the downward diagonal contribution was
done in a similar way, and for symmetry reasons one finds
gD = gU. According to equations (29), (40) and (9), (10),
the diffusion coefficient follows in the limit of small collision
parameter A as

D = kBT τ

(
1

A

√
π

kBT
M−3/2 − 1

2

)
, (41)

which is in good agreement with simulation data; see figure 2.
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a

m

u u

q

h
BA

Figure 2. A double cell consisting of two subcells for horizontal
collisions along the σ 1 direction defined in figure 1. uA is the
horizontal component of the mean velocity of the n + m = NA

particles in the left subcell. The horizontal component of the
p + q = NB particles in the right subcell is given by uB.

It is interesting to note that the contributions to D from
the vertical and horizontal collisions together, (gH + gV)/4,
are exactly equal to those from the diagonal ones, (gU +
gD)/4, which is a sign of the correct isotropic choice of the
probabilities w and wd.

3.3. Density fluctuations

Density fluctuations were completely ignored in the derivation
of equation (41). In principle, the correct density fluctuations
which follow from the equation of state could be incorporated,
but here we will only estimate the effect of these fluctuations.
This can be done by assuming that the particle numbers n and
m in the two subcells are uncorrelated and behave as in an
ideal gas. Instead of replacing n and m by the mean value
M in the expressions for gH and gU we average over a Poisson
distribution. In this case the probability to find n particles in
the left subcell is given by

pcell,n = exp(−M) Mn/n! , (42)

where M is the average particle number per cell, M = 〈n〉.
On the other hand, any one of these n particles can be our
tagged particle of index i . Hence, the probability that a given
particle is in a subcell with a total of n particles is equal
to pn ∼ n pcell,n (see for instance [11]). Normalizing this
probability gives

pn = 1

M

e−M Mn

(n − 1)! . (43)

Care must be taken for the case when at least one of n or m are
zero. The formal expression might look divergent, but one has
to keep in mind how the algorithm is actually working: The
acceptance probability pA ∼ nm is zero in this case, hence
no collision is executed. This means that the velocities do not
change, vi,x (τ ) = vi,x (0), and the actual value of gH and gU

is unity. This can be incorporated by starting the summations
over n and m at n = 1, m = 1 instead of zero in equation (44).

There is another subtle point about this average: for
quantities with index l, such as K l

nm , we have to use pn to
average over the particle number in the left subcell which
contains the tagged particle, but pcell to average over the
particle number m in the right subcell. This is because no

specific particle is addressed in the right subcell; all that is
needed is the probability to find a given particle number m in
this cell. These arguments lead to the following result:

gH = 1 − 2A

√
kBT

2π

〈√
nm

n + m

[ m

2n
+ n

2m
+ n + m − 1

]〉

n,m

= 1 − 2A

√
kBT

2π

∞∑

n=1

∞∑

m=1

{
pn pcell,m

√
nm

n + m

[
m

2n

+ 1

2
(n + m − 1)

]
+ pm pcell,n

√
nm

n + m

×
[

n

2m
+ 1

2
(n + m − 1)

]}
. (44)

Similar expressions hold for the diagonal terms, gU and gD.
These averages over the Poisson-distributed particle numbers
cannot be done analytically. Therefore, a numerical evaluation
of the sums was performed and inserted in expressions (9), (10)
to obtain the diffusion coefficient. This result provides
an upper limit for the effect of fluctuations. A check
shows that it only differs by a few per cent from the result
without fluctuations. As seen in figure 2 of [17], the
simulation results show excellent agreement with the formula
without particle number fluctuations. The effective excluded
volume interactions of the current non-ideal model lead to a
suppression of density fluctuations. Hence, it seems plausible
that neglecting particle number fluctuations entirely is a better
approximation for this model than assuming strong ideal-gas-
like density fluctuations.

4. Kinetic viscosity

The multi-particle collision algorithm consists of two steps—
streaming and collision. Each of these steps redistributes
momentum. At large mean free path λ compared to the cell
size a, this transport mainly occurs in the streaming step where
momentum is directly carried away by the moving particles.
At small mean free path, most momentum is transferred in
the collision step. The momentum transport during streaming
is characterized by the so-called kinetic viscosity, whereas
the transfer during collisions gives rise to the collisional
contribution to the viscosity. The kinetic viscosity is given by
the Green–Kubo relation [21],

νkin = τ

NkBT

∞∑

n=0

′〈σxy,k(0)σxy,k(nτ )〉. (45)

The prime on the sum indicates that the first n = 0 term has a
prefactor 1/2. σxy,k is the off-diagonal element of the kinetic
stress tensor,

σxy,k =
N∑

j=1

v j,xv j,y . (46)

In order to evaluate equation (46) the correlation of the stress
tensor for only one time step apart is needed, since under the
assumption of molecular chaos the sum in equation (45) is
again a geometric series. Hence, the following quantity is
required:

b =
N∑

i, j=1

〈vi,x (0)vi,y(0)v j,x(τ )v j,y(τ )〉 . (47)

6
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Analogous to equation (10) we have

b = w(bV + bH) + wD

2
(bU + bD) (48)

where bV describes the contribution from the vertical
collisions, bH the horizontal, and bU and bD the ones from the
diagonal collisions.

4.1. Horizontal contribution

During a horizontal collision, only v j,x can change. Thus,
using 〈viαv jβ〉 = δi jδαβ kBT we have

bH =
N∑

i, j=1

〈[
pAvi,xvi,y[2ux − v j,x ]v j,y

+ (1−pA)vi,xvi,yv j,xv j,y
]〉

(49)

= N(kBT )2 + 2kBT

〈
pA

N∑

j=1

v j,x(ux − v j,x)

〉
(50)

where the time argument was omitted since all velocities are
now at the same time t = 0. The sum over all particles can be
rewritten as a sum over all double cells and over the particles
in each of them since both ux and pA depend only on the
properties of the particles in the considered double cell. This
leads to the following simplification:

bH = N(kBT )2 + 2kBT NH

〈
pA

n+m∑

j=1

v j,x(ux − v j,x)

〉
(51)

NH = N/(2M) is the number of double cells for horizontal
collisions. The sum runs over the n particles in the left subcell
of a double cell and over the m particles in the right subcell.
The average has to be taken over n, m and over the velocity
distribution. Inserting the definition of pA, equation (12),
yields

bH = N(kBT )

{
kBT + A

M

〈
nm

n+m∑

j=1

〈θ(�u)�u v j,x

× (ux − v j,x)〉T

〉

n,m

}
. (52)

As before, the subscript T denotes the thermal average at fixed
particle numbers per cell, and the subscript n, m refers to the
average over the particle numbers.

The remarkable feature of equation (52) is that the calcu-
lation of bH is reduced to the same integrals that appeared in
the previous section in the calculation of the diffusion coef-
ficient, namely the quantities K l

nm and K r
nm defined in equa-

tions (16), (17). This also means, as in the case of the diffu-
sion coefficient, that there again is a non-trivial coupling be-
tween the velocity-dependent acceptance probability and the
elements of the stress tensor. As before, a mean-field-like treat-
ment consisting of multiplying the averaged value of pA with
the averaged stress correlations leads to a large error—a fac-
tor of two. This error persists even in the case of high particle
numbers, where one naively would assume this decoupling to
be correct. According to equations (17), (52) we have

bH = N(kBT )

{
kBT + A

M
〈nm

(
nK l

nm + mK r
nm

)〉n,m

}
.

(53)

Using the explicit form of the quantities K , equa-
tions (17), (18), gives

bH = N(kBT )2

{
1 − A

M

√
kBT

2π
〈(n + m)

√
nm(n + m)〉n,m

}
.

(54)
Ignoring particle number fluctuations, and replacing n and m
by their mean value M , leads to the final expression:

bH = N(kBT )2

{
1 − 2A

√
kBT

π
M3/2 ,

}
(55)

which looks identical to gH, equation (29), except the prefactor.
Since the stress tensor is symmetric with respect to

interchanging x and y, and the collision rules are constructed
to be also x–y-symmetric, one has for the vertical contribution
bV = bH.

4.2. Diagonal contributions

The upward diagonal contribution can be written as

bU =
N∑

i, j=1

〈[
pAvi,xvi,y ṽ j,x ṽ j,y + (1 − pA)vi,xvi,yv j,xv j,y

]〉

(56)

= N(kBT )2 +
N∑

i, j=1

〈
pAvi,xvi,y[ṽ j,x ṽ j,y − v j,xv j,y]

〉
. (57)

The tilde denotes velocities at time τ as opposed to time zero.
The sum over the particle index j is rewritten as a sum over all
available double cells for diagonal collisions and another sum
over the particles in that cell. The reason again is that both
the velocities at time τ and the collision probability pA depend
only on the considered double cell. One finds that

bD = N(kBT )2 + ND

〈(
N∑

i=1

vi,xvi,y

)

×
n+m∑

j=1

pA[ṽ j,x ṽ j,y − v j,xv j,y]
〉

(58)

where ND = N/(4M) is the number of double cells for
diagonal collisions. (This number is smaller than the one
for horizontal collisions due to the specific algorithm chosen.)
Inserting the collision rules for upward diagonal collisions,
equation (6), yields

bD = N(kBT )2 + ND

〈(
N∑

i=1

vi,xvi,y

)

×
n+m∑

j=1

pA(ux + uy)[ux + uy − v j,x − v j,y]
〉

(59)

= N(kBT )2 + AN

4M

〈(
N∑

i=1

vi,xvi,y

)〈
nm

n+m∑

j=1

θ(�u) �u (60)

× (ux + uy)[ux + uy − v j,x − v j,y]
〉

T

〉

n,m

(61)

7



J. Phys.: Condens. Matter 20 (2008) 235224 T Ihle

uα and �u are properties of the collision cell and can be
put in front of the sum. The summation gives zero, since∑n+m

(uα − v j,α) = 0. Thus,

bU = N(kBT )2. (62)

For the downward diagonal collisions a similar calculation
results in bD = bU for symmetry reasons.

Final result for kinetic viscosity. Combining the results for
bV = bH, equation (55), and bD = bU, equation (62), gives

b = 1

4
(2bH) + 1

4
(2bD) = N(kBT )2

(
1 − A

√
kBT

π
M3/2

)
.

(63)
With r = b/(N(kBT )2) the summation of the geometric series
leads to the kinetic viscosity

νkin = τkBT

2

1 + r

1 − r
= τkBT

(
1

A

√
π

kBT
M−3/2 − 1

2

)
(64)

which is exactly equal to the diffusion coefficient, equa-
tion (41) and also scales with

√
kBT . Hence, in the limit of

large mean free path the Schmidt number, Sc = ν/D, of this
model goes to unity. Sc can be modified by adding additional
regular SRD rotations on the subcell level which do not change
the equation of state.

5. Collisional viscosity

In contrast to the kinetic viscosity, the collisional contribution
is evaluated in non-equilibrium—in shear flow with shear
rate γ̇ . Only the limit of infinitesimally small shear rates
will be considered, that means the collisional viscosity will
be calculated to zeroth order in γ̇ . In principle, it is
possible to perform the calculation in higher order, which
would tell us about eventual shear or shear thinning similar
to [22, 23]; however, in lowest order a number of convenient
approximations can be made. For example, we can neglect the
deviation of the particle velocity distributions from a Gaussian
shape since this distortion is caused by the very small shear rate
and gives rise to a higher order term in the viscosity. Due to
the shear, the velocity distribution depends on the height yi of
particle i and the following factorized form of the N-particle
distribution function can be assumed:

fN,x ≈
N∏

i=1

f0(vi,x − γ̇ yi) (65)

fN,y ≈
N∏

i=1

f0(vi,y) (66)

where f0 is the Maxwell–Boltzmann distribution, equa-
tion (19). This factorization is equivalent to assuming molec-
ular chaos which was shown to be a very good approxima-
tion for calculations of the collisional part of transport coeffi-
cients [21]. A given collision cell (which consists of two sub-
cells) is divided by a line y = h, and average transfer of x-
momentum across this line is calculated. Vertical collisions do

not change the x-component of the velocities at all, and hence
do not have to be considered. However, both diagonal and the
horizontal collisions transfer x-momentum across this line and
will be evaluated in the next subsections.

5.1. Horizontal collisions

A dividing line is assumed to go across a pair of horizontally
aligned subcells at fixed height y = h with 0 � h � a, see
figure 2. The left subcell contains NA particles which are split
into two populations below and above the dividing line with
particle numbers n, m, respectively, such that NA = n + m.
The line divides the particle population in the right subcell into
p and q particles, with total particle number NB = p + q .
For now, the particle numbers n, m, p, and q are kept fixed. I
consider the change of total x-momentum of the n+ p particles
below the dividing line, which is equal to the amount of x-
momentum transferred over this line to the particles denoted
as filled circles in figure 2. This momentum transfer �px for
fixed height h and fixed particle numbers is averaged over the
particle positions and velocities, resulting in

〈�px〉H
nmpq =

〈〈
pA

n+p∑

j=1

�vi,x

〉

V

〉

Y

. (67)

The upper index, H, stands for ‘horizontal’ and the averages
are defined as

〈· · ·〉V =
∫ ∞

−∞
... fN,x dv

n+m+p+q
i,x (68)

〈· · ·〉Y = 1

hn+p

∫ h

0
dyn+p

i

1

(a − h)m+q

∫ a

h
... dym+q

i . (69)

Later, additional averages over the particle numbers and the
height h (which is equivalent to an average over the random
shifts) will be performed. The dashed line in figure 2 divides
the two cells into four cell fractions; the restricted position
average, (69), takes into account that particles can be at any
height y within their corresponding cell fractions with equal
probability. No averaging over the lateral positions is needed
since the flow speed depends on y but not on x . For small
collision parameter A the acceptance probability is given by
equation (12) and is proportional to θ(�u). �u is equal to the
difference of the mean velocities in the two subcells projected
onto the σ 1 = x̂ direction,

�u = uA − uB = 1

NA

n+m∑

i=1

vi,x − 1

NB

n+m+p+q∑

i=n+m+1

vi,x . (70)

The particle number in the left subcell is NA = n + m, and
NB = p+q is the particle number in the right subcell. In order
to simplify the integration over the θ -function, the exponential
representation from equations (20), (21) is utilized again. �vi,x

is the change of x-component of a particle and follows from
the collision rule (5) as �vi,x = 2(ux − vi,x ). Here, ux

is the center of mass velocity of the two subcells together,

8
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ux = (v1,x + ... + vn+m+p+q,x )/(NA + NB). Equation (67)
becomes

〈�px〉H
nmpq = 2ANA NB

〈〈∫ ∞

0
dc
∫ ∞

−∞
dk

2π
eik(�u−c)

× �u
n+p∑

j=1

(ux − v j,x)

〉

V

〉

Y

. (71)

The velocity average is performed over the approximated non-
equilibrium velocity distribution fN,x , defined in equation (65),
which still depends on the height yi of the particles. This
suggests the following variable transformation:

v̂i,x = vi,x − γ̇ yi . (72)

In addition, the auxiliary variable c is changed into c̃ by the
transformation

c̃ = c − γ̇ Q

Q = y1 + ... + yn+m

NA
− yn+m+1 + ... + yn+m+p+q

NB

(73)

which moves the yi -dependence from the exponent into the
integral boundaries. One obtains

〈�px〉H
nmpq = 2ANA NB �n+m+p+q

×
〈∫ ∞

−γ̇ Q
dc̃
∫ ∞

−∞
dk

2π

∫ ∞

−∞
exp[ik(�û − c̃)]

× exp

{
− 1

2kBT
(v̂2

1,x + v̂2
2,x + ... + v̂2

n+m+p+q,x )

}

× [�û + γ̇ Q]
[
(n + p)ûx −

n+p∑

j=1

v̂ j,x + γ̇ R

]〉

Y

(74)

with

R = n + p

NA + NB

n+m+p+q∑

j=1

y j −
n+p∑

j=1

y j . (75)

In order to decouple the velocity integrals, the argument of the
exponential is transformed into a sum of squares by changing
the velocity variables in the left subcell,

wi = v̂i,x − kBT ik

NA
for i = 1...NA (76)

and the ones in the right subcell,

wi = v̂i,x + kBT ik

NB
for i = NA + 1...NA + NB . (77)

It is straightforward to perform the resulting Gaussian integrals
over the new variables wi ; however, it is sufficient to only
evaluate the term linear in the shear rate γ̇ . There is also a shear
independent term, but it will cancel out later in the final average
over the dividing line. This is to be expected since there should
be no net momentum transfer in equilibrium where γ̇ = 0. The
next higher order term must be cubic in the shear rate, since
the viscosity (which is proportional to the momentum transfer

divided by the shear rate) should not depend on the sign of the
shear rate. The relevant linear term has a simple structure,

〈�px〉H
nmpq = O(1) + O(γ̇ 3) + 2ANA NB γ̇ kBT

×
〈∫ ∞

−γ̇ Q
dc̃
∫ ∞

−∞
dk

2π
exp

(
−ikc̃ − k2γ kBT

2

)
ik � ,

〉

Y

(78)

� = Q

(
p

NA
− n

NB

)
+ Rγ. (79)

One can show that replacing the lower shear dependent
boundary in the c̃-integral by zero will only cause an error
of order γ̇ 3 in the momentum transfer which is negligible.
With this modification the integrals over k and c have simple
solutions, and one arrives at

〈�px〉H
nmpq = ANA NB γ̇

√
2kBT

πγ
〈�〉Y +O(1)+O(γ̇ 3). (80)

The position average 〈· · ·〉Y defined in equation (69) over
particle heights gives 〈yi〉Y = h/2 for particles below the
dividing line with i = 1, ...n. Above the dividing line, where
i = NA + 1, ..., NA + p, one finds 〈yi 〉Y = (a + h)/2. These
results help finding the following averages:

〈Q〉Y = a

2

(
m

NA
− q

NB

)

〈R〉Y = a

2

(n + p)(m + q)

NA + NB

〈�〉Y = a

2

[
2(pm + nq) + nm + pq

NA NB
− pq

N2
B

− nm

N2
A

]
.

(81)

The numbers in the cell fractions, n and m, as well as p and q ,
are fluctuating even at fixed NA and NB and are approximately
binomially distributed. This leads to the following rules
when performing the binomial average 〈· · ·〉b over the particle
numbers:

〈n〉b = NA w , 〈p〉b = NB w

〈m〉b = NA (1 − w) , 〈q〉b = NB (1 − w)

〈nm〉b = (NA − 1)w(1 − w),

〈pq〉b = (NB − 1)w(1 − w),

(82)

where w = h/a is the relative height of the dividing line.
Using equations (80)–(82) and averaging over the height of the
dividing line, 〈...〉h = (1/a)

∫ a
0 ...dh, the average momentum

transfer at fixed NA and NB is obtained,

〈〈�px〉〉H
NA,NB

= Aγ̇ a

6

√
kBT

2πγ

[
4NA NB + (NA − NB)2

NA NB

]

+ O(γ̇ 3). (83)

5.2. Diagonal collisions

Both diagonal collisions along σ 3 and σ 4 in figure 1 will also
transfer x-momentum over a horizontal diagonal line. Only the
contribution from the upward diagonal, σ 3, will be discussed

9
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p

uB

a

n

m

uA

h

Figure 3. A double cell consisting of two subcells for collision along
the upward diagonal direction σ 3 as defined in figure 1. uA is the
component of the mean velocity projected on σ 3 of the n + m = NA

particles in the left subcell. The projected mean velocity of the
p = NB particles in the upper right subcell is given by uB.
A line divides the lower cell at height h, 0 � h � a.

here, since the contribution from the downwards diagonal gives
the same result for symmetry reasons. It is necessary to
distinguish between the two cases depicted in figures 3 and 4
where (A) the dividing line goes through the lower cell and
(B) where the line goes through the upper cell. Only both
contributions together will give the correct result with the same
structure as equation (83).

First, case A is considered. The change of x-momentum
of the particles described by full circles in figure 3 is given as

〈�px〉A
nmp =

〈〈
pA

n∑

j=1

�vi,x

〉

V

〉

Y

(84)

where the upper index, A, denotes upward diagonal collisions
for situation A. The average over the particle height 〈...〉Y

and the velocity distribution 〈...〉V differs from the previous
definition equations (68), (69),

〈...〉V =
∫ ∞

−∞
... fN,x fN,y dv

n+m+p
i,x dv

n+m+p
i,y (85)

〈...〉Y = 1

hn

∫ h

0
dyn

i

1

(a − h)m

∫ a

h
dym

i

1

a p

∫ 2a

a
... dy p

i (86)

the velocity average now involves the y-component of the
particle velocities as well.

The acceptance probability pA is again given by
equation (12) and proportional to θ(�u) which however has
now a different form,

�u = uA−uB = 1

NA

n+m∑

i=1

vi,x + vi,y√
2

− 1

NB

n+m+p∑

i=n+m+1

vi,x+vi,y√
2

.

(87)
The particle number in the bottom left cell is NA = n + m, and
NB = p is the particle number in the top right cell. Using the
exponential representation (20), (21) for the θ -function, and the

u

a

uA

p

n

m

h

B

Figure 4. A double cell consisting of two subcells for collision along
the upward diagonal direction σ 3 as defined in figure 1. uA is the
component of the mean velocity projected on σ 3 of the p = NA

particles in the lower left subcell. The projected mean velocity of the
n + m = NB particles in the upper right subcell is given by uB.
A line divides the upper cell at height h, a � h � 2a.

upward collision rule (6) to redefine �vi,x = ux + uy − vi,x −
vi,y , one finds

〈�px〉A
nmpq = ANA NB ×

〈〈∫ ∞

0
dc
∫ ∞

−∞
dk

2π
eik(�u−c)�u

×
n+p∑

j=1

(ux + uy − v j,x − v j,y)

〉

V

〉

Y

. (88)

This expression is evaluated using similar substitutions and
approximations as for horizontal collisions. After performing
all averages one obtains the momentum transfer for fixed
particle numbers NA, NB (in linear order in the shear rate γ̇ ):

〈〈�px〉〉A
NA,NB

= Aγ̇ a

12

√
kBT

2πγ

[
(NA − 1)

(
1 − NB

NA

)

+ 14NA NB

]
. (89)

A similar calculation for case B where the dividing line cuts
the top right cell, see figure 4, results in

〈〈�px〉〉B
NA,NB

= Aγ̇ a

12

√
kBT

2πγ

[
(NB − 1)

(
1 − NA

NB

)

+ 14NA NB

]
. (90)

By averaging both results, one finds the momentum transfer for
the upward (U ) diagonal collision for NA � 1 and NB � 1:

〈〈�px〉〉U
NA,NB

= 1
2

(〈〈�px〉〉A
NA ,NB

+ 〈〈�px〉〉B
NA,NB

)

= Aγ̇ a

6

√
kBT

2πγ

[
7NA NB + (NA − NB)2

4NA NB

]
. (91)

This expression is symmetric in NA and NB, as it should be,
and has the same general structure as equation (83). Finally,
this result is multiplied by two to account for the contribution
from the downward diagonal and added together with the result

10
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Figure 5. Total viscosity ν as a function of time step τ for small
collision rate. The symbols are numerical results obtained by
evaluating Green–Kubo relations for M = 3. The solid line is the
theoretical result, ν = νcoll + νkin from equations (64), (94).
Parameters: L = 64a, M = 5, kBT = 1, and A = 1/60.

for horizontal collisions using the weight factors w and wd

for horizontal and diagonal collisions, respectively. The total
average momentum transfer is

〈〈�px〉〉NA,NB = Aγ̇ a

12

√
kBT

2πγ

×
[
(28wd + 8w)NA NB + (wd + 2w)

(NA − NB)2

NA NB

]
.

(92)

Now, one can derive the collisional part to the kinematic
viscosity, νcoll, which is proportional to the momentum
transferred per time and length

〈�px〉
2a τ

= γ̇ νcoll ρ (93)

ρ = M/a2 is the density of our two-dimensional fluid.
Replacing the particle numbers NA and NB by the average
particle number per cell, M and setting w = 1/4 and wd =
1/2, one gets

νcoll = a2

3τ
A

√
kBT

π
M3/2 (94)

for not too small mean particle number per cell, M �
2. Figures 5 and 6 compare the theoretical result for the
total viscosity, ν = νcoll + νkin from equations (64), (94),
with numerical results obtained by evaluating Green–Kubo
relations for stress autocorrelation functions (for numerical
details see [17, 20]). One sees that the agreement at small and
large mean free paths is very good. The small deviations at
intermediate mean free path are within the error bars of the
data. However, there is another possibility; in regular SRD it
was found [24] that at λ � a corrections due to the violation
of molecular chaos become relevant in νkin, but not in νcoll.
These effects are large for very small λ, but in this limit they
are irelevant for the total viscosity because it is dominated by
νcoll. Hence, if at all, one would see these deviations only
at intermediate mean free paths. It is possible that there are

42 3
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Figure 6. Same as figure 5: total viscosity ν = νcoll + νkin as a
function of time step τ , but for larger τ , and compared to the
theoretical result.

similar deviations for the current model which could show at
intermediate λ.

There is a simple argument for the structure of
expression (94): collisions ‘smear out’ momentum over a
distance of order cell size a in one time step τ . The kinematic
viscosity is the coefficient of momentum diffusion, which in
analogy to a random walk is defined by the ‘hopping ’ distance
a per time step as D ∼ a2/τ . However, the collisions occur
with some collision rate which is proportional to the thermal
average of the acceptance probability given by

〈pA〉 = A 〈θ(�u) �u NA NB〉 ∼ A
√

kBT M3/2. (95)

Therefore, one would expect

νcoll ∼ a2

τ
〈pA〉 ∼ a2

τ
A
√

kBT M3/2 (96)

which is exactly what was found. A similar argument can be
made for the kinetic part of the viscosity. The analogy to a
random walk predicts νkin ∼ λ2/τ since momentum is now
only ‘hopping’ a distance of the order of the mean free path
λ = τ

√
kBT . In addition, it is clear that at pA → 0 there are

almost no collisions, the momentum is traveling huge distances
and the kinetic viscosity becomes very large. This can be
described by an additional factor 1/〈pA〉 and one obtains

νkin ∼ 1

〈pA〉
λ2

τ
∼ kBT τ

〈pA〉 ∼ τ

A

√
kBT M−3/2 (97)

which, apart from a small correction term, agrees with
what was derived rigorously, equation (64). Using this
conceptual insight, one can easily predict the general form of
these expressions for arbitrary acceptance probabilities without
actually going through tedious derivations.

6. Results for other models

6.1. Large collision rate, A → ∞
The calculation of the previous sections are easily modified to
treat the limit of large collision parameter A → ∞, where the
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Figure 7. Total viscosity ν = νcoll + νkin as a function of time step τ
for large collision rate, A → ∞. The symbols are numerical results
obtained by evaluating Green–Kubo relations for M = 3. The solid
line is the theoretical result from equations (98), (100), for M = 3.
The dashed line is the theoretical result for M = 10. Parameters:
L = 64a, kBT = 1, and A → ∞.

acceptance probability is simply pA = θ(�u). One finds

ν∞
kin = kBT τ

2

(
6M + 1 − e−2M

2M − 1 + e−2M

)
(98)

for the kinetic viscosity if ideal-gas-like fluctuations are
assumed. The exponential terms come from averaging over the
particle number fluctuations assuming a Poisson-distribution.
This assumption is correct for an ideal gas, but not for the
current model with a non-ideal equation of state, which has
smaller fluctuations. Furthermore, it was shown that the
density fluctuations in the limit of large A are even smaller than
predicted by the equation of state [19]. Given the small size
of the exponential terms ∼e−2M for typical particle numbers
M between three and 20, the fluctuation corrections, i.e. the
exponential terms, can be safely neglected.

By modifying the non-equilibrium calculation scheme of
section 5, one obtains the average momentum transfer in shear
flow for NA � 1, NB � 1 as

〈〈�px〉〉NA,NB = aγ̇

24(NA + NB)

× [(14wd + 4w)NA NB + (wd + 2w)(NA + NB − 2)] .

(99)

Ignoring particle number fluctuations by setting NA = NB =
M , substituting w = 1/4, wd = 1/2, the collisional viscosity
follows from equation (93),

ν∞
coll = a2

12τ

[
1 + 1

4M

(
1 − 1

M

)]
. (100)

Figure 7 shows excellent agreement of simulation data for
M = 3 from [19] with the theoretical results for the total
viscosity ν = νkin + νcoll from equations (98), (100). One
sees that the viscosity is basically independent of the particle
number M at small mean free path.

6.2. Transport coefficients for a binary mixture

In [18] a multi-component version of the current collision
model was introduced. Consider a binary system with
two types of particles, A and B. In order to obtain phase
separation, a repulsion between different kinds of particles
was implemented; but there is no repulsion among particles
of the same kind. This is done in the following way.Suppose
a double cell is selected for a possible collision. A particles
in cell 1 can undergo collisions with B particles from cell 2.
For symmetry reasons, B particles from cell 1 are also checked
for possible collision with A particles in cell 2. The rules and
probabilities for these collisions are exactly the same as in the
one-component situation. This means that most of the results
derived above can be used with only minor modifications.

MA = 〈NA〉 is the average number of A particles in a cell
of size a; MB = 〈NB〉 is the average number of B particles
in such a cell. The total particle density in a cell is now given
by ρ = (MA + MB)/a2. While using equations (16)–(27)
for diffusion calculations one has to distinguish whether the
tagged particle is of the A or B type. For the self-diffusion of
A particles one has to set n = NA and m = NB in equation (18)
for K l

nm , but n = NB and m = NA in K r
nm , which, because

of the symmetry K r
nm = K l

mn , leads to Knm = K l
NA NB

. The
corresponding results for the auxiliary variables gH, gU and g
are not symmetric with respect to the particle numbers NA and
NB, and a short calculation gives g A

H = 1 − 2φA, g A
U = 1 − φA

and g A = 1 − φA with

φA = A

√
kBT

2πγ

(
MA + MB − 1 + MB

MA

)
(101)

and γ = 1/MA + 1/MB where the actual numbers NA, NB

have already been replaced by their average values, MA and
MB, respectively. Similar considerations hold for the diffusion
of B particles and one obtains the diffusion coefficient for A
and B particles, respectively,

DA = kBT τ

(
1

φA
− 1

2

)

DB = kBT τ

(
1

φB
− 1

2

)
with

φB = A

√
kBT

2πγ

(
MA + MB − 1 + MA

MB

)
.

(102)

Both particles diffuse the same way only if MA = MB. In
this case the diffusion coefficient D = DA = DB agrees
with the one for the single-component model, equation (41). If
there are fewer A than B particles, the diffusion of A particles
is slower even if the masses of both particles are the same
as assumed here. This is physically plausible, since a single
A particle in a sea of B particles will be backscattered very
often, whereas the many B particles keep going and are less
affected by the collisions. Figure 8 plots the ratio of the two
diffusion coefficients DA/DB as a function of the averaged
relative particle number difference, �ρ = (MA − MB)/(MA +
MB) for fixed total number M = MA + MB. �ρ was
only varied in a range where both particle numbers MA and
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Figure 8. Ratio of the diffusion coefficient for A and B particles,
DA/DB, as a function of averaged relative particle number
�ρ = (MA − MB)/M for fixed total number M = MA + MB. The
dashed line is the theoretical result from equations (102), for M = 3.
The solid line is for M = 5, and the dotted one is for M = 10.
Parameters: kBT = 1, A = 1/60, τ = 1, MA � 1, MB � 1.

MB are always larger than or equal to unity because density
fluctuations become significant at smaller particle numbers but
are neglected in the theory. For a total number of M = 5 and
MA = 1, MB = 4 one sees that B particles diffuse about twice
as fast as A particles.

Finally, the kinetic and collisional viscosities are
determined by applying concepts from the previous sections,
and one finds

νbin
kin = kBT τ

{
1

A

√
π

2kBT
[MA MB(MA + MB)]−1/2 − 1

2

}

νbin
coll = Aa2

3τ

√
kBT MA MB

2π(MA + MB)3

[
4MA MB + (MA − MB)2

4MA MB

]
.

(103)

7. Conclusion

In this paper, I have presented a detailed, systematic derivation
of the transport coefficients of a multi-particle collision model
for fluid flow with a non-ideal equation of state. Similar
calculations have been published before, but to my knowledge,
this is the first derivation which accounts for velocity-biased
collision rules in MPC. Analytic expressions for the self-
diffusion coefficient and the shear viscosity are obtained, and
very good agreement is found with numerical results at small
and large mean free paths. For the analysis of the collisional
contribution to the viscosity, an earlier scheme was improved,
which can now be used to derive possible shear thinning or
thickening. The general formalism was also applied to a binary
collision model with a miscibility gap. General arguments for

the scaling of the transport coefficients with temperature and
particle number as a function of the collision rule are given.
This allows one to predict without tedious derivations how the
transport coefficients change if the collision rule is modified.

For the current collision rule, the viscosity turns out to be
proportional to the square root of temperature as in a real gas.
It is shown that at large mean free path the viscosity and the
diffusion coefficient are exactly equal, resulting in a Schmidt
number of one in this limit.
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